KVPY QUESTION PAPER-2016 (STREAM SX)

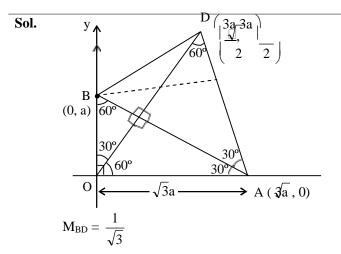
Part – I

One-Mark Questions

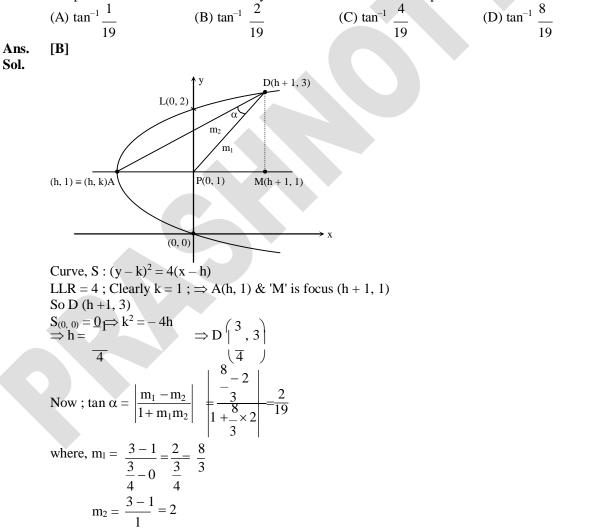
Date: 06 / 11 / 2016

MATHEMATICS The number of triples (x, y, z) of real numbers satisfying the equation $x^4 + y^4 + z^4 + 1 = 4$ xyz is (A) 0 (D) more than 8 (B) 4 (C) 8 [B] Ans. Sol. (x, y, z) are real & x^4 , y^4 , z^4 are positive real numbers $\therefore \frac{x^4 + y^4 + z^4 + 1}{4} \ge \mid xyz \mid$ \Rightarrow (xyz) \geq |xyz| i.e., xyz > 0So it holds equality $\therefore x^4 = y^4 = z^4 = 1$; But xyz > 0 $\therefore (\mathbf{x}, \mathbf{y}, \mathbf{z}) \in \{(1, 1, 1), (1, -1, -1), (-1, 1, -1), (-1, -1, 1)\}$ So no. of triplets is 4. If P(x) be a polynomial with real coefficients such that P(sin²x) = P(cos²x), for all $x \in [0, \pi/2]$. Consider the following statements : I. P(x) is an even function. P(x) can be expressed as a polynomial in $(2x - 1)^2$ II. P(x) is a polynomial of even degree I. Then. (A) all are false (B) only I and II are true (C) only II and III are true (D) all are true Ans. [C] $P(\sin^2 x) = P(\cos^2 x)$ Sol. $P(\sin^2 x) = P(1 - \sin^2 x)$ $P(x) = P(1 - x) \forall x \in [0, 1]$ Differentiable both sides w.r.t. x P'(x) = -P'(1-x)

So P '(x) is symmetric about point $x = \frac{1}{2}$


So P'(x) has highest degree odd \Rightarrow P(x) has highest degree even

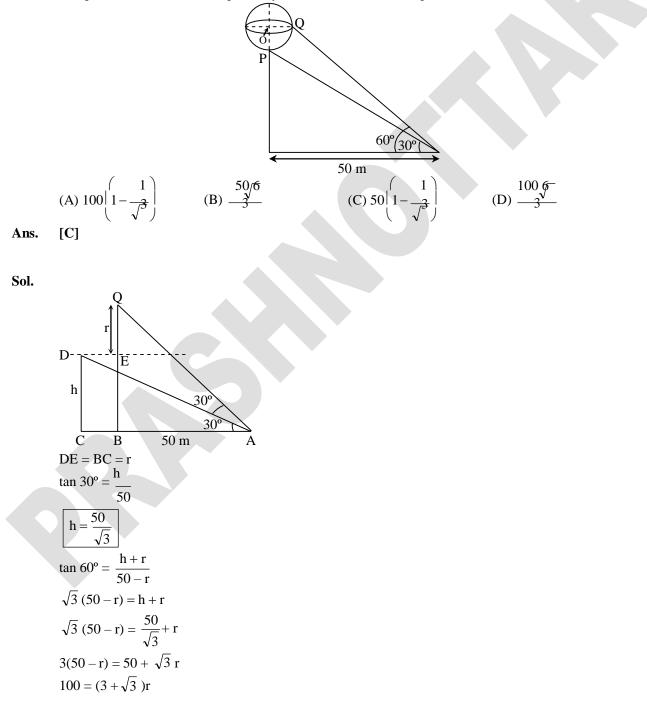
1.


2.

3. For any real number r, let $A_r = \{e^{i\pi m} : n \text{ is a natural number}\}$ be a set of complex numbers. Then -(A) A_1 , A_1 , $A_{0.3}$ are all infinite sets (B) A_1 is a finite set and A_1 , $A_{0.3}$ are infinite sets (D) A_1 , $A_{0.3}$ are finite sets and A_1 is an infinite sets (C) A_1 , A_1 , $A_{0.3}$ are all finite sets π Ans. [D] $e^{i\pi rn}$ is always a finite set when r is a rational & is infinite when $r = \frac{1}{2}$. Sol. Number of integers k for which the equation $x^3 - 27x + k = 0$ has at least two distinct integer roots is -4. (A) 1 (B) 2 (C) 3 (D) 4 [B] Ans. Let $f(x) = x^3 - 27x$ Sol. $f'(x) = 3x^2 - 27 = 3(x^2 - 9)$ 54 -3 3 54 As sum of the roots is zero, so if two roots are integer then 3rd root has to be integer Now put x = 6t $216 t^3 - 27 \times 6t + k = 0$ $54 (4t^3 - 3t) + k = 0$ Put $t = \cos \theta$ $54 \cos 3\theta = -k$ Now for $3\theta = 0$, 2π we get integral solution So two values of 'k' Suppose the tangent to the parabola $y = x^2 + px + q$ at (0, 3) has slope -1. Then p + q equals 5. (A) 0 **(B)** 1 (C) 2 (D) 3 [C] Ans. (0, 3) lies on the curve Sol. $\therefore p + q = -1 + 3 = 2$ 6. Let O = (0, 0); let A and B be points respectively on x-axis and y-axis such that $\angle OBA = 60^{\circ}$. Let D be a point in the first quadrant such that OAD is an equilateral triangle. Then the slope of DB is-(D) $\frac{1}{\sqrt{3}}$ (C) $\frac{1}{\sqrt{2}}$ (A) $\sqrt{3}$ (B) $\sqrt{2}$

Ans. [D]

7. Suppose the parabola $(y - k)^2 = 4 (x - h)$, with vertex A, passes through O = (0, 0) and L = (0, 2). Let D be an end point of the latus rectum. Let the y-axis intersect the axis of the parabola at P. Then \angle PDA is equal to



8. In a circle with centre O, suppose A, P, B are three points on its circumference such that P is the mid-point of minor arc AB. Suppose when $\angle AOB = \theta$, area(Δ APB) If $\angle AOB$ is doubled to 2 θ , then the ratio $\frac{\text{area}(\Delta AOB)}{\text{area}(\Delta APB)}$ is -(D) $\frac{\sqrt{5}-1}{2}$ (B) $\sqrt{5} - 2$ (C) $2\sqrt{3} + 3$ (A) $\frac{1}{\sqrt{5}}$ Ans. [A] Sol. $B(\cos\theta, \sin\theta)$ $\int_{0}^{1} P(\cos\frac{\theta}{2}, \sin\frac{\theta}{2})$ 0 $\frac{\Delta(AOB)}{\Delta APB} = 2 + \sqrt{5}$ $\frac{\Delta APB}{\frac{1}{2} \cdot 1 \cdot \sin \theta} = 2 + \sqrt{5} \text{ on solving}$ $\frac{1}{2} \begin{vmatrix} 1 & 0 & 1 \\ \cos \theta & \sin \theta & 1 \\ \cos \theta & \sin \theta & 1 \end{vmatrix}$ $\frac{\cos \theta}{\cos \theta} = 2 + \sqrt{5} \implies \cos \theta = \frac{1 + \sqrt{5}}{4}$ So $\cos \theta = \frac{\sqrt{5}-1}{4}$ If $\theta \to 2\theta$ $\frac{\Delta AOB}{\Delta APB} = \frac{\cos \theta}{1 - \cos \theta} = \frac{1}{\sqrt{5}}$ $X = \{x \in R : \cos(\sin x) = \sin(\cos x)\}$. The number of elements in X is -9. (A) 0 (D) not finite (B) 2 (C) 4 Ans. [A] $\cos(\sin x) = \sin(\cos x)$ Sol. $\sin\left(\frac{\pi}{2}\pm\sin x\right) = \sin\left(\cos x\right)$ $\cos x = n\pi + (-1)^n (\frac{\pi}{2} + \sin x), n \in I$

 $\implies \cos x \pm \sin x = n\pi + (-1)^n \frac{\pi}{2}, n \in I$

As LHS $\in [-\sqrt{2}, \sqrt{2}]$, and it does not satisfies RHS So No solution possible

10. A sphere with centre O sits atop a pole as shown in the figure. An observer on the ground is at a distance 50m from the foot of the pole. She notes that the angles of elevation from the observer to points P and Q on the sphere are 30° and 60°, respectively. Then, the radius of the sphere in meters is -

$$r = \frac{100}{3 + \frac{3}{2}}$$

$$r = \frac{1003 - 3r}{6} = 50 \left(1 - \frac{1}{\sqrt{3}}\right)$$
1. The graph of the function $f(x) = x + \frac{1}{8} \sin (2\pi x), 0 \le x \le 1$ is shown below. Define $f_1(x) = f(x_1(x)) = f(f_0(x_2)), \text{ for } n \ge 1$

$$f_1(x) = f(x_1), f_{n-1}(x) = f(f_0(x_2)), \text{ for } n \ge 1$$

$$\frac{1}{900} = \frac{1}{900} = \frac{1}$$

Sol.

lim_

Apply L Hospital х

 2 e^{t³}dt

$$\lim_{x \to \infty} \frac{2x \int e^{t^3} + x^2 e^{x^3}}{3x^2 e^{x^3}}$$
$$\lim_{x \to \infty} \frac{2 \int e^{t^3} + x e^{x^3}}{3x e^{x^3}}$$
$$\lim_{x \to \infty} \frac{2e^{x^3} + e^x + 3x^3 e^x}{3e^{x^3} + 9x^3 e^{x^3}}$$
$$\lim_{x \to \infty} \frac{3 + 3x^3}{3 + 9x^3} = \frac{1}{3}$$

The polynomial equation $x^3 - 3ax^2 + (27a^2 + 9)x + 2016 = 0$ has -13. (A) exactly one real root for any real a (B) three real roots for any real a (C) three real roots for any $a \ge 0$, and exactly one real root for any a < 0(D) three real roots for any $a \le 0$, and exactly one real root for any a > 0[A]

Ans.

 $f'(x) = 3x^{2} - 6ax + 27a^{2} + 9$ = 3[x² - 2ax + 9a² + 3] = 3((x - a)² + 8a² + 3) Sol. \therefore f'(x) is + ve for x \in R so f(x) is monotonic \uparrow for $x \in R$.

The area of the region bounded by the curve $y = |x^3 - 4x^2 + 3x|$ and the x-axis, $0 \le x \le 3$, is-(A) $\frac{37}{6}$ (B) $\frac{9}{4}$ (C) $\frac{37}{12}$ (D) 0 14.

Ans. [C]

Sol.
$$A = \int_{0}^{1} f(x)dx - \int_{1}^{3} f(x)dx = \int_{0}^{1} (x^{3} - 4x^{2} + 3x)dx - \int_{1}^{3} (x^{3} - 4x^{2} + 3x)dx = \frac{37}{12}$$

The number of continuous function $f: [0, 1] \rightarrow [0, 1]$ such that $f(x) < x^2$ for all x and $\int_0^1 f(x) dx = \frac{1}{3}$ is: 15. (A) 0 **(B)** 1 (C) 2 (D) infinite

Ans. [A]

Sol. \therefore f(x) is always positive for x \in [0, 1] 1

$$\therefore f(x) < x^2 \implies \int_0^{\infty} f(x) dx < \int_0^{\infty} x^2$$

$$\boxed{I < \frac{1}{3}}$$

But it is given that $I = \frac{1}{3}$ which is not possible

16. On the real line R, we define two functions f and g as follows : $f(x) = \min\{x - [x], 1 - x + [x]\}$ $g(x) = \max\{x - [x], 1 - x + [x]\}$ Where [x] denotes the largest integer not exceeding x. The positive integer n for which $\int_{0} (g(x) - f(x)) dx = 100 \text{ is}$ (A) 100 (B) 198 (C) 200 (D) 202 [C] Ans. Sol. y = f(x) $\overline{2}$ y = g(x)2 n 3 n $\int g(x)dx = n \int g(x)dx = -n \int f(x)dx = -\frac{n}{4}$

- 17. Let v be a vector in the plane such that $|\vec{v} i| = |\vec{v} 2i| = |\vec{v} j|$. Then |v| lies in the interval (A) (0, 1] (B) (1, 2] (C) (2, 3] (D) (3, 4]
- Ans. [C]

Sol. V is the circumcentre of $\triangle ABC$ $\forall A \equiv (1, 0), B \equiv (0, 1), C(2, 0)$ Let V(x, y) VA = VB = VC $(x - 1)^2 + 3y^2 = 3x^2 + (y - 1)^2 = (x - 2)^2 + y^2$ $(x, y) = \begin{vmatrix} z \\ 2 \end{vmatrix}$ V = $\frac{3i + 3j}{2}$ $|v| = \frac{3}{\sqrt{2}} \in (2,3)$

18.

A box contains b blue balls and r red balls. A ball is drawn randomly from the box and is returned to the box with another ball of the same colour. The probability that the second ball drawn from the box is blue is -

(A)
$$\frac{b}{r+b}$$
 (B) $\frac{b^2}{(r+b)^2}$ (C) $\frac{b+1}{r+b+1}$ (D) $\frac{b(b+1)}{(r+b)(r+b+1)}$
Ans. [A]
Sol. $P(b_2) = P(b_1) \cdot P\left(\frac{b_2}{b_1}\right) + P(R_1) \cdot P\left(\frac{b_2}{R_1}\right) = \frac{b}{b+r} \cdot \frac{b+1}{b+r+1} + \frac{r}{b+r} \cdot \frac{b}{b+r+1} = \frac{b}{b+r}$

19.	The number of noncongruent integer-sided triangles whose sides belong to the set {10, 11, 12,, 22} is-			ong to the set {10, 11, 12,, 22} is-
	(A) 283	(B) 446	(C) 448	(D) 449
Ans.	[C]			
Sol.	Number of scalene	e triangles		
	$= {}^{13}C_3 - 3$ [10,1]	11,22		
	√101	12 22		
	$= {}^{13}C_3 - 3 \qquad \{ 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,$	17,21		
	C)		
	Number of isoscel	es triangles		
		10,10,22		
	$=(^{13}C_2 \times 2) - 4$	11,11,22		
	$= (^{13}C_2 \times 2) - 4$ = 152	10,10,21		
		10,10,20		
	Number of equilat	-		
	$= {}^{13}C_1 = 13$	C C		
	So total number of	f triangles $= 448$		
20.	between the tiles.	Suppose that we can regular hexagon. Then	choose tiles of the follow the tiling can be done with t	of the four shapes
Ans. [•	the four shapes	(D) exactly one o	i ule iour shapes
				1 1 .1 1 .1

Sol. We can cover the plane using squares definitely using equilateral triangle, we can also cover the plane. Also regular hexagon is made of equilateral triangles. But pentagon cannot cover the plane because of its shape.

		PHYSICS		
Physical processes are sometimes described visually by lines. Only the following can cross-				
(A) Streamlines in fluid flow	V	(B) Lines of forc	es in electrostatics	
(C) Rays in geometrical opti	cs	(D) Lines of forc	e in magnetism	
[C]				
$A \Rightarrow$ If stream lines intersec	t then there wil	ll be two direction of fluid	d flow at a point, which is absurd.	
$B \Rightarrow$ Lines of forces in electrostatic never intersect				
$D \Rightarrow$ Line of force in magne	$D \Rightarrow$ Line of force in magnetism never intersect each other.			
Uniform ring of radius R is 1	moving on a ho	prizontal surface with spec	ed v and then climbs up a ramp o	
(A) $v^2/2g$ (B) v^2/g	(C) $3v^2/2g$	(D) $2v^2/g$	
[B]				
$\frac{1}{mV^2} + \frac{1}{mP^2} \left(\frac{V}{V} \right)^2$	ah	(Using someonus	tion of anomal)	
$-\operatorname{IIIV}^{-} + -\operatorname{IIIK}^{-} - = \mathrm{III}$	ign	{ Using conserva	tion of energy)	
$m\left(\frac{V^2}{V}+\frac{V^2}{V}\right) - mgh$				
$\left(\frac{2}{2}, \frac{2}{2}\right)$ ingr				
\mathbf{V}^2				
h = -				
	(A) Streamlines in fluid flow (C) Rays in geometrical opti [C] A \Rightarrow If stream lines intersec B \Rightarrow Lines of forces in elect D \Rightarrow Line of force in magne Uniform ring of radius R is n inclination 30° to a height h. (A) $v^2/2g$ (B [B] $\frac{1}{2}mV^2 + \frac{1}{2}mR^2\left(\frac{V}{R}\right)^2 = m$ $m\left(\frac{V^2}{2} + \frac{V^2}{2}\right) = mgh$	(A) Streamlines in fluid flow (C) Rays in geometrical optics [C] A \Rightarrow If stream lines intersect then there wi B \Rightarrow Lines of forces in electrostatic never D \Rightarrow Line of force in magnetism never interval Uniform ring of radius R is moving on a horizon inclination 30° to a height h. There is no shi (A) v ² /2g (B) v ² /g [B] $\frac{1}{2}$ mV ² + $\frac{1}{2}$ mR ² $\left(\frac{V}{R}\right)^2$ = mgh m $\left(\frac{V^2}{2} + \frac{V^2}{2}\right)$ = mgh	Physical processes are sometimes described visually by lines. Only to (A) Streamlines in fluid flow (B) Lines of force (C) Rays in geometrical optics (D) Lines of force [C] A \Rightarrow If stream lines intersect then there will be two direction of fluid B \Rightarrow Lines of forces in electrostatic never intersect D \Rightarrow Line of force in magnetism never intersect each other. Uniform ring of radius R is moving on a horizontal surface with speci inclination 30° to a height h. There is no slipping in the entire motion (A) $v^2/2g$ (B) v^2/g (C) $3v^2/2g$ [B] $\frac{1}{2}mV^2 + \frac{1}{2}mR^2\left(\frac{V}{R}\right)^2 = mgh$ {Using conservation	

- 23. A gas at initial temperature T undergoes sudden expansion from volume V to 2V. Then -
 - (A) The process is adiabatic
 - (B) The process is isothermal
 - (C) The work done in this process is nRT $\ell n_e(2)$ where n is the number of moles of the gas.
 - (D) The entropy in the process does not change

Ans. [A]

Sol. In sudden expansion gas do not get enough time for exchange of heat.

.: Process is adiabatic.

24. Photons of wavelength λ are incident on a metal. The most energetic electrons ejected from the metal are bent into a circular arc of radius R by a perpendicular magnetic field having a magnitude B. The work function of the metal is (Where symbols have their usual meanings) -

(A)
$$\frac{hc}{\lambda} - m_e + \frac{e^2 B^2 R^2}{2m_e}$$

(B) $\frac{hc}{\lambda} + 2m_e \begin{vmatrix} eBR \\ \Delta \\ m_e \end{vmatrix}$
(C) $\frac{hc}{\lambda} - \frac{m_e C^2}{2m_e} - \frac{e^2 B^2 R^2}{2m_e}$
(D) $\frac{hc}{\lambda} - \frac{2m_e}{2m_e} \begin{vmatrix} eBR \\ 2m_e \end{vmatrix}$

Ans. [D]

Sol.
$$R = \frac{mv}{qB}$$

$$V = \frac{qBR}{m} = \frac{eBR}{m_e}$$

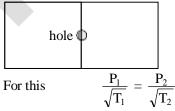
$$\frac{hc}{\lambda} - \phi = KE_{max} \text{ (Einstein photo electric equation)}$$

$$\phi = \frac{hc}{\lambda} - KE_{max}$$

$$= \frac{hc}{\lambda} - \frac{1}{2}m_e \left(\frac{eBR}{m_e}\right)^2$$

$$= \frac{hc}{\lambda} - 2m_e \left(\frac{eBR}{2m_e}\right)^2$$

25. A container is divided into two equal part I and II by a partition with a small hole of diameter d. The two partitions are filled with same ideal gas, but held at temperature $T_I = 150$ K and $T_{II} = 300$ K by connecting to heat reservoirs. Let λ_I and λ_{II} be the mean free paths of the gas particles in the two parts such that $d \gg \lambda_I$ and $d \gg \lambda_{II}$. Then λ_I / λ_{II} is close to -


$$(A) 0.25 (B) 0.5$$

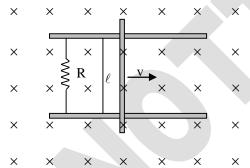
Ans. [C]

Sol. As dimension of hole is very small than mean path, then at equilibrium effusion rate of gas in both direction must be equal.

(C) 0.7

(D) 1.0

Mean free path
$$\propto \frac{T}{P}$$


$$\frac{\lambda_1}{\lambda_2} = \frac{T_1}{T_2} \times \frac{P_2}{P_1}$$

$$\frac{T_1}{T_2} \times \frac{\sqrt{T_2}}{\sqrt{T_1}}$$

$$\frac{\lambda_1}{\lambda_2} = \sqrt{\frac{T_1}{T_2}} = \sqrt{\frac{150}{300}} = 0.7$$

26.

A conducting bar of mass m and length ℓ moves on two frictionless parallel rails in the presence of a constant uniform magnetic field of magnitude B directed into the page as shown in the figure . The bar is given an initial velocity v_0 towards the right at t = 0. Then the

- (A) Induced current in the circuit is in the clockwise direction
- (B) Velocity of the bar decreases linearly with time
- (C) Distance the bar travels before it comes to a complete stop is proportional to R
- (D) Power generated across the resistance is proportional to ℓ

Ans. Sol.

$$F = iB\ell$$
$$a = \frac{iB\ell}{m}$$
$$\phi = B \Lambda$$

4

[C]

$$\phi = B.A$$

$$\frac{d\phi}{dt} = B.\ell.\left(\frac{dx}{dt}\right)$$

$$\varepsilon = (B.\ell v)$$

$$i = \varepsilon/R = \frac{B.\ell v}{R}$$

$$a = \left(\frac{B\ell v}{R}\right)\frac{B\ell}{R}$$

$$a = \frac{B^2\ell^2}{Rm} \cdot v$$

$$\Rightarrow a = v.\frac{dv}{dx}$$

$$\Rightarrow v. \frac{dv}{dx} = \frac{B^2\frac{2}{\ell}}{Rm} \cdot v$$

$$\Rightarrow \int dv = \frac{B^2 \ell^2}{Rm} \cdot \frac{dx}{vRM}$$
$$v = \frac{B^2 \ell^2}{Rm} \cdot \frac{VRM}{X} \cdot \frac{VRM}{B'\ell^2}$$

27. A particle with total mechanical energy, which is small and negative, is under the influence of a one dimensional potential $U(x) = x^4/4 - x^2/2$ J Where x is in meters. At time t = 0s, it is at x = -0.5 m. Then at a later time it can be found

(A) Anywhere on the x axis
(C) Between x = -1.0 m to x = 0.0 m
Ans. [C]
Sol. at t = 0, x = 0.5

$$u = \frac{x + x}{4} \frac{x}{2} \xrightarrow{2} \Rightarrow \frac{1}{4} \times \frac{1}{16} - \frac{1}{4} \times \frac{1}{2} \Rightarrow \left| \frac{1}{4} \right|$$

$$\frac{du}{dx} = \frac{4x^3}{4} - \frac{2x}{2} = x^3 - x$$

$$\frac{du}{dx} = x (x^2 - 1)$$

$$\frac{du}{dx} = 0 \text{ at point of maxima \& minima}$$

$$\left(\frac{d^2u}{dx}\right)_{x=0}^2 = -1 \text{ point of maxima}$$

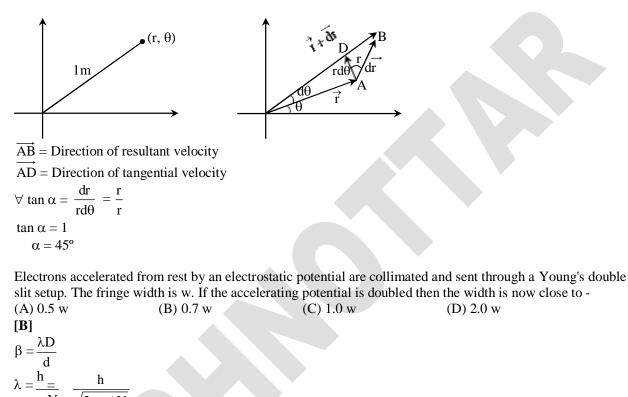
$$\left(\frac{d^2u}{dx}\right)_{x=\pm 1}^2 = 2 \text{ point of minima}$$

(B) Between x = -1.0 m to x = 1.0 m(D) Between x = 0.0 m to x = 1.0 m

particle will found between (-1, 0)

28.

A nurse measures the blood pressure of a seated patient to be 190 mm of Hg - (A) The blood pressure at the patient's feet is less than 190 mm of Hg


(B) The actual pressure is about 0.25 times the atmospheric pressure

- (C) The blood pressure at the patient's neck is more than 190 mm of Hg $\,$
- (D) The actual pressure is about 1.25 times the atmospheric pressure **[D]**
- Ans. [
- Sol. Blood pressure is gauge pressure = 190 mm HgAtmospheric pressure = 760 mm HgActual pressure = $190 + 760 \text{ mm Hg} = 950 \text{ mm Hg} = <math>1.25 \times 760 \text{ mm Hg}$

29. A particle at a distance of 1 m from the origin starts moving such that $dr/d\theta = r$, where (r, θ) are polar coordinates. Then the angle between resultant velocity and tangential velocity componentis (B) 45 degrees

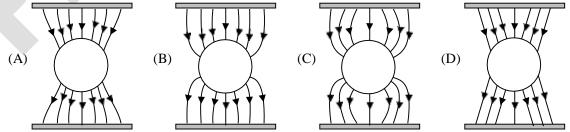
- (A) 30 degrees
- (C) 60 degrees [B]
- (D) Dependent on where the particle is

Ans. Sol.

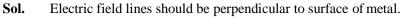
$$\beta \propto \lambda \qquad \therefore \beta \propto \lambda \qquad \therefore \beta \propto -\frac{1}{\sqrt{2mq\Delta V}}$$

as ΔV is double

$$\therefore \beta \text{ is } \frac{1}{\sqrt{2}} \text{ times of } \beta_{\text{ol}}$$
$$\therefore \beta_{\text{new}} = 0.7\beta$$
$$= 0.7w$$

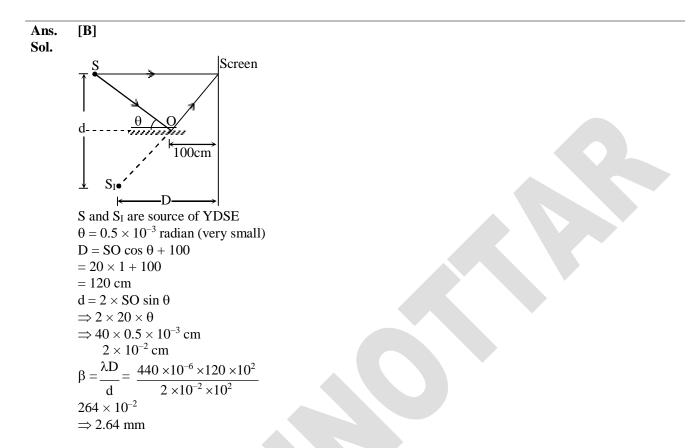

31.

30.


Ans.

Sol.

A metallic sphere is kept in between two oppositely charged plates. The most appropriate representation of the field lines is -



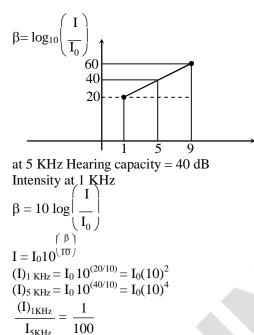
Ans. [B]

 $\sqrt{\Delta V}$

32.	An electron with kinetic energy E collide elastic	es with a hydrogen atom in the ground state. The collision will be
	(A) For all values of E	(B) For $E < 10.2 \text{ eV}$
	(C) For $10.2 \text{ eV} < \text{E} < 13.6 \text{ eV}$ only	(D) For $0 < E < 3.4$ eV only
Ans.	[B]	· · ·
Sol.	When e ⁻ collide with atom which is massive if this E is less than min excitation energe \therefore E < 10.2 eV (Minimum excitation energe	
33.	The continuous part of X-ray spectrum is	s a result of the
	(A) Photoelectric effect	(B) Raman effect
	(C) Compton effect	(D) Inverse photoelectric effect
Ans.		
Sol.	Continuous X Ray is inverse of photoele	ectric effect
34.	Thermal expansion of a solid is due to the	ne de la constante de la const
		atomic potential energy curve of the solid
		r atomic potential energy curve of the solid
	(C) double well nature of the inter-atomi	
	(D) Rotational motion of the atoms of th	
Ans.	[B]	
Sol.		symmetric characteristic of inter atomic potential energy curve of t
35.	An electron and a photon have same way	velength of 10^{-9} m. If E is the energy of the photon and p is the
	momentum of the electron, the magnitud	le of E/p in SI units is
	(A) 1.00×10^{-9} (B) 1.50×10^{8}	(C) 3.00×10^8 (D) 1.20×10^7
Ans.	[C]	
Sol.	Energy of photon = $E = \frac{hc}{hc}$	
501.	Energy of photon – E – $\underline{-}_{\lambda}$	
	h	
	Momentum of photon = $P = \frac{1}{1}$	
	λ	
	E E	
	$E = PC$ $\cdot \frac{E}{2} = C = 3 \times 10^8 \text{ t}$	n/s
	$E = PC$ $\therefore \frac{E}{P} = C = 3 \times 10^8 r$	n/s
36.	If one takes into account finite mass of t	the proton, the correction to the binding energy of the hydrogen at
36.	If one takes into account finite mass of t	
36.	If one takes into account finite mass of t	the proton, the correction to the binding energy of the hydrogen at
36. Ans.	If one takes into account finite mass of t is approximately (mass of proton = 1.60	the proton, the correction to the binding energy of the hydrogen at $\times 10^{-27}$ kg, mass of electron = 9.10 $\times 10^{-31}$ kg)-
	If one takes into account finite mass of the is approximately (mass of proton = 1.60 (A) 0.06 % (B) 0.0006 % [A] A monochromatic light source S of wav Image of S in M can be used as a virtual source S from O is 20.0 cm, and the determined of the source S from O is 20.0 cm, and the determined of the source S from O is 20.0 cm, and the determined of the source S from O is 20.0 cm, and the determined of the source S from O is 20.0 cm, and the determined of the source S from O is 20.0 cm, and the determined of the source S from O is 20.0 cm, and the determined of the source S from O is 20.0 cm, and the determined of the source S from O is 20.0 cm, and the determined of the source S from O is 20.0 cm, and the determined of the source S from O is 20.0 cm, and the determined of the source S from O is 20.0 cm.	the proton, the correction to the binding energy of the hydrogen at $\times 10^{-27}$ kg, mass of electron = 9.10 $\times 10^{-31}$ kg)-

38. A nuclear fuel rod generates energy at a rate of 5×10^8 Watt/m³. It is in the shape of a cylinder of radius 4.0 mm and length 0.20 m. A coolant of specific heat 4×10^3 J/(kg-K) flows past it at a rate of 0.2 kg/s. The temperature rise in this coolant is approximately -

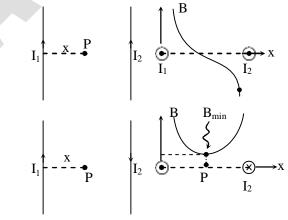
	(A) 2°C	(B) 6 °C	(C) 12 °C	(D) 30 °C
Ans.	[B]			

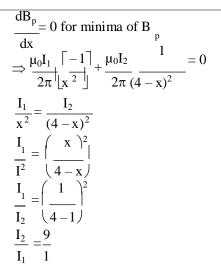

Sol.

() () (T) (T)

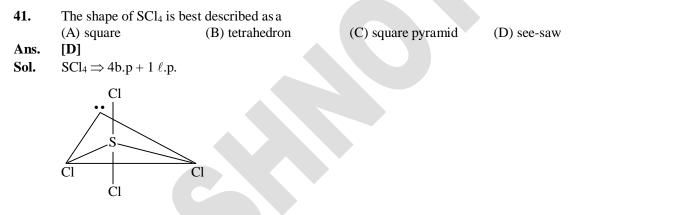
- **39.** A hearing test is conducted on an aged person. It is found that her threshold of hearing is 20 decibels at 1 kHz and it rises linearly with frequency to 60 decibels at 9 kHz. The minimum intensity of sound that the person can hear at 5 kHz is-
 - (A) 10 times than that at 1 kHz
 - (C) 0.5 times than that at 9 kHz

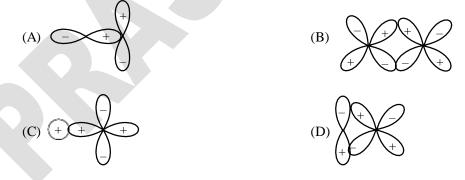
- (B) 100 times than that at 1 kHz
- (D) 0.05 times than that at 9 kHz


Ans. Sol. **[B]**

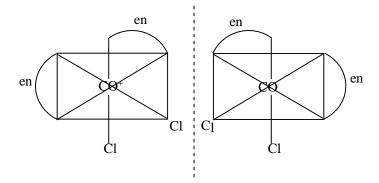

40. Two infinitely long parallel wires carry currents of magnitude I_1 and I_2 and are at a distance 4 cm apart. The magnitude of the net magnetic field is found to reach a non-zero minimum values between the two wires and 1 cm away from the first wire. The ratio of the two currents and their mutual direction is

(A) $\frac{I_2}{I_1} = 9$, antiparallel (B) $\frac{I_2}{I_1} = 9$, parallel (C) $\frac{I_2}{I_1} = 3$, antiparallel (D) $\frac{I_2}{I_1} = 3$, parallel [A]


Ans. Sol.


 $B_p = \frac{\mu_0 I_1}{2\pi x} + \frac{\mu_0 I_2}{2\pi (4-x)}$

CHEMISTRY


42. Among the following atomic orbital overlap, the non-bonding overlap is

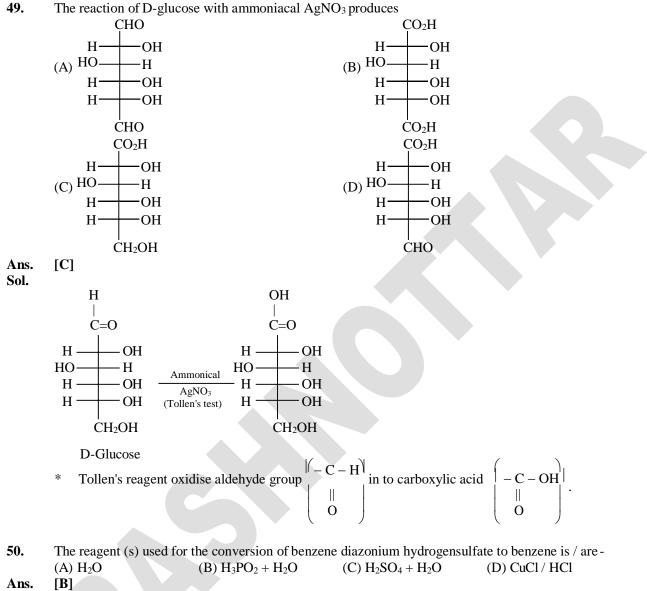
- **Sol.** It has +ve & –ve overlap both simultaneous. So it leads to non-bonding overlap.
- **43.** Among the following complexes, the one that can exhibit optical activity is (A) $[CoCl_6]^{3-}$ (B) $[Co(en)Cl_4]^-$ (C) cis- $[Co(en)_2Cl_2]^{3+}$ (D) trans- $[Co(en)_2Cl_2]^+$ **Ans. [C]**

Sol.

- Ans. [B]
- **Sol.** Acidic strength of acid is $HClO_4 > HClO_3 > HClO_2 > HClO$ $[H^+] \uparrow ka \uparrow p^{ka} \downarrow$ $\therefore p^{k_a} \text{ order } HClO_4 < HClO_3 < HClO_2 < HClO_3$
- **45.** The packing efficiency of the face centered cubic (fcc), body centered cubic (bcc) and simple / primitive cubic (pc) lattices follows the order
- (A) fcc > bcc > pc (B) bcc > fcc > pc (C) pc > bcc > fcc (D) bcc > pc > fccAns. [A]
- Sol.

	FCC	BCC	SC
η	74%	68%	52.4%
order FCC > BCC	> SC		

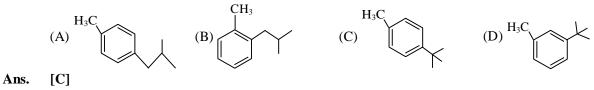
- **46.** The ratio of root mean square velocity of hydrogen at 50 K to that of nitrogen at 500 K is closest to (A) 1.18 (B) 0.85 (C) 0.59 (D) 1.40
- Ans. [A]

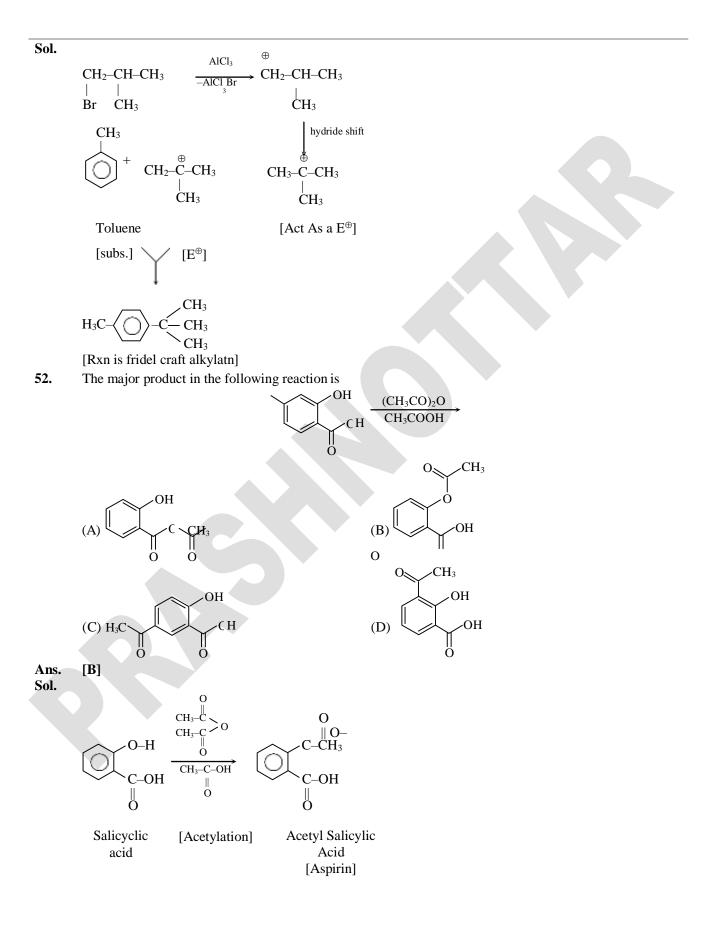

Sol. $V_{\rm rms} = \frac{3RT}{M}$

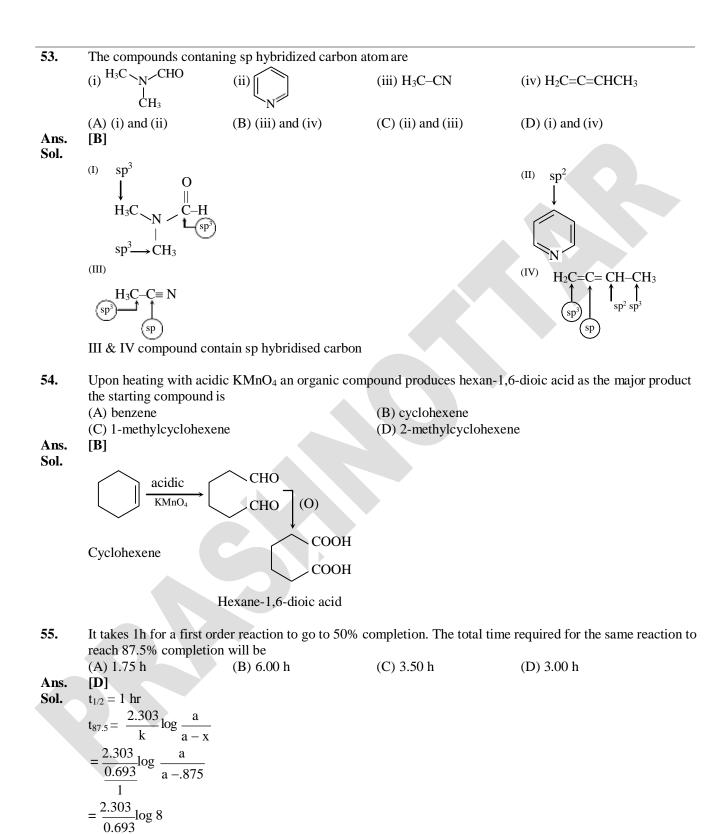
$$\frac{(V_{rms})_{H_2}}{(V_{rms})_{O_2}} = \frac{\sqrt{\frac{3 \times R \times 50}{2}}}{\sqrt{\frac{500}{28}}} \times R \times$$


47. The molecule with the highest dipole moment among the following is (A) NH₃ (B) NF₃ (C) CO (D) HF

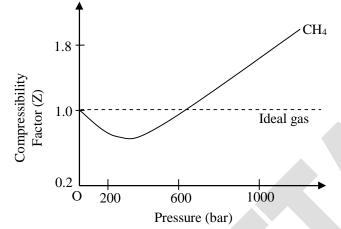
Ans. [D] Sol. $\mu \propto \Delta$


- **bl.** $\mu \propto \Delta E \cdot N$ So HF has highest value of dipole moment
- **48.** The most stable Lewis acid-base adduct among the following is (A) $H_2O \rightarrow BCl_3$ (B) $H_2S \rightarrow BCl_3$ (C) $H_3N \rightarrow BCl_3$ (D) $H_3P \rightarrow BCl_3$ **Ans. [C]**
- Sol. Greater is the tendency to donate ℓ .p more stable will be the lewis. acid-acid-base adduct.




Sol.

51. The major product obtained in the reaction of toluene with 1-bromo-2-methyl propane in the presence of anhydrous AlCl₃ is



 $=\frac{2.303}{0.693} \times 3 \times .3010$

= 3

56. A unit cell of calcium fluoride has four calcium ions. The number of fluoride ions in the unit c				
	(A) 2 (B) 4		(C) 6	(D) 8
Ans.	[D]			
Sol.	No. of F^- will be equal to eight sin	ice for one Ca+2	² there should b	be two F ⁻ ion.
57.	-			X is 3.8×10^{-3} . The cell potential E ^o (in V) and
	the free energy change ΔG° (in kJ	mol^{-1}) for this e	equilibrium res	pectively, are
	(A) – 0.071, –13.8		(B) – 0.071,	13.8
	(C) 0.71, -13.8		(D) 0.071, –	13.8
Ans.	[B]			
Sol.	$\Delta G^\circ = -2.303 \times 8.314 \times 298 \log 6$	3.8×10^{-3})J		
	= 13809.3876J = 13.809 Kg			
	$\Delta G^{\circ} = -nFE^{\circ}$			
	$13809.387 = -2 \times 96500 \times E^{\circ}$			
	$E^{\circ}_{cell} = .071$			
58.	The number of stereoisomer possi	ble for the follo	owing compour	ndis
	CH ₃ -CH=CH-CH(Br)-CH ₂ -CH ₃			
	(A) 2 (B) 3		(C) 4	(D) 8
Ans.	[C]			
	OI			
	**			
a .	CH ₃ -CH=CH-CH ₂ -CH ₃			
Sol.	GI Br			
	n=2 [No. of stereogenic area] Total stereoisomer = 2^n			
	[When symm. is/are absent] Total starse isomer = $2^2 = 4$			
	Total stereo isomer = $2^2 = 4$			
59.	In the radioactive disintegration s	eries $\frac{232}{90}$ Th —	$\longrightarrow \frac{208}{82}$ Pb, inv	olving α and β decay, the total number of α
	and β particles emitted are			
	(A) 6α and 6β		(B) 6 α and	4 β
	(C) 6α and 5β		(D) 5 α and	6β
Ans.	[B]			
Sol.	no. of α -particle = $\frac{232 - 208}{4} = 6$			
	no. of β -particle = 4			

60. In the following compressibility factor (Z) vs pressure graph at 300 K, the compressibility of CH_4 at pressure < 200 bar deviates from ideal behaviour because

(A) The molar volume of CH₄ is less than its molar volume in the ideal state

- (B) The molar volume of CH₄ is same as that in its ideal state
- (C) Intermolecular interactions between CH₄ molecules decresases
- (D) The molar volume of CH_4 is more than its molar volume in the ideal state

Ans. [A]

Sol. $Z = \frac{(V_M)r}{r} < 1$ at p < 200 bar

 $(V_M)_i$

 $\therefore (V_M)_r < (V_M)_i$

BIOLOGY

- 61. Which of the following molecules is a primary acceptor of CO₂ in photosynthesis?(A) Pyruvate(B) 3-phosphoglycerate
 - (C) Phosphoenol pyruvate
- Ans. [C]
- Sol. In C_4 plants the primary acceptor of CO_2 is phosphoenol pyruvate, a 3C compound. e.g. In Maize, Sugarcane etc.
- 62. Which one of the following pairs of molecules never forms a hydrogen bond between them ?
 - (A) Water and water

(B) Water and glucose(D) Water and octane

(D) Oxaloacetate

(C) Water and ethanol

Ans. [D]

- **Sol.** Hydrogen bond is a weak bond between two molecules resulting from an electrostatic attraction between a proton in one molecule and an electronegative atom in another molecule. This is not possible in case of water and octane
- **63.** Lactase hydrolyses lactose into
 - (A) Glucose + glucose
 - (C) Galactose + galactose
- Ans. [B]
- **Sol.** Lactose $\xrightarrow{\text{Lactase}}$ Glucose + Galactose

(B) Glucose + galactose(D) Galactose + fructose

64.	Which of the following statements is incorrect regarding biological membrane?					
	(A) It is composed of lipids and proteins (B) Desirable proteins are lossely essentiate with the membrane					
	(B) Peripheral proteins are loosely associate with the membrane(C) Integral proteins span the lipid bilayer					
			structural and functional a	symmetry		
Ans.	(D) Lipids and memoran [D]	e proteins do not provide		asymmetry		
Sol.		etry to plasma membrane	as they are of 2 types i e	peripheral and integral		
501	Proteins provide asymmetry to plasma membrane, as they are of 2 types i.e. peripheral and integral.					
65.	The percentage of sunlight captured by plants is					
	(A) 2-10%	(B) 10-20%	(C) 60-80%	(D) 100%		
Ans.	[A]		. ,			
Sol.	Plants capture 2-10 % of	PAR				
66.	· · ·	ollens, named exine, is m				
	(A) cellulose	(B) tapetum	(C) sporopollenin	(D) pectin		
Ans.	[C]		1			
Sol.	Sporopolienin forms the	exine of pollen grain whi	ch is resistant to acids, hig	gh temperature and radiations.		
67.	Insectivorous plants such	as Venus fly tran catch a	nd digest insects in order	to supplement the deficiency of		
07.	(A) Sulphur	(B) Nitrogen	(C) Potassium	(D) Phosphorus		
Ans.	[B]		(C) Totaborani			
Sol.		w in Nitrogen deficient so	ils and in order to comper	sate the deficiency they catch		
		tain N from chitin (NAG)				
(0						
68.		statements about nucleoso	me is true ?			
	(A) It consists of only DNA(B) It is a nucleus-like structure found in prokaryotes					
	(B) It is a nucleus-like structure found in prokaryotes (C) It consists of DNA and proteins					
	(D) It consists of only his					
Ans.	[C]					
Sol.	Nucleosome is the small	est unit of DNA packagin	g containing 200 nitrogen	bases and four types of histone		
	proteins i.e. H ₂ A, H ₂ B, H	H_3 and H_4 . H_1 type of history	one is used in plugging.			
(0)						
69.		s are held by specialized	junctions, one of them bei	ng "Gap junction". Function of a		
	"Gap junction" is to	ommunication by rapid tra	unsfar of small molecules			
	(B) Cement the neighbou		uister of small molecules			
	(C) Stop substances from					
			of small molecules across	tissues		
Ans.	[A]	······				
Sol.		asmic communications be	tween two epithelial cells	for rapid transfer of some ions		
	and small molecule					
70.			andular epithelium in sali	vary gland?		
	(A) It consists of isolated					
	(B) It consists of mutlice(C) Its secretions are end					
	(D) It consists of squame					
Ans.	[B]	vus opicional cons				
Sol.		llular exocrine gland, mad	de up cuboidal epithelium	•		

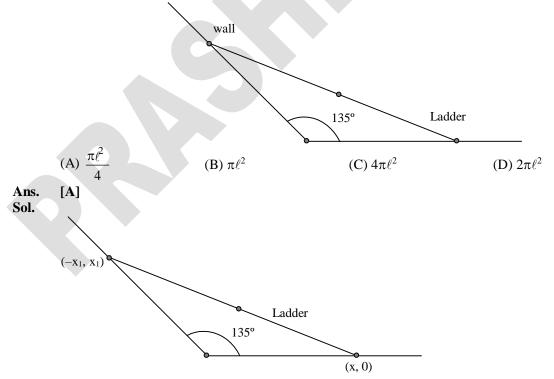
71.	Which one of the following ion pairs is involved in nerv	
		K^+, Cl^- (D) K^+, Ca^{2+}
Ans. Sol.	[A] Na ⁺ - K ⁺ pump is essential for impulse conduction	
72.	Which of the following hormones that controls blood pr (A) Erythropoietin (B) A	essure is secreted by human heart? Atrial natriuretic factor
		Glucocorticoid
Ans. Sol.	[B] ANF [Anti-Natriuretic Factor] is antagonist of Renin Ho pressure. ANF is secreted from heart.	ormone and act as Vasodilator to reduce blood
73.	Oxytocin and vasopressin are synthesized in	
		Adrenal gland
		Dvary
Ans.	•••	
Sol.	Oxytocin and Vasopressin synthesised in hypothalamus to release in blood	then comes into neurohypophysis of pituitary gland
	[Given answer by KVPY is C]	
74.	If you exhale multiple times into a conical flask containi	ng lime water through a single inlet fixed through a
/	stop cork, lime water will ?	ng nine water through a single ninet fixed through a
	· · ·	Furn milky
		Furn yellow
Ans.	-	run yenew
Sol.	Exhaled air has CO_2 in it.	
	$\begin{array}{rcl} Ca(OH)_2 &+ & CO_2 &\rightarrow & CaCO_3\\ Lime water & Exhaled air & Milky white ppt\\ So lime water become milky white. \end{array}$	+ H ₂ O
75.	The path of passage of stimulus when you accidentally t	
		Muscles \rightarrow Spinal cord \rightarrow Receptor
•		Receptor \rightarrow Spinal cord \rightarrow Muscles
Ans.		
Sol.	Reflex arch	
	Receptor \rightarrow Sensory Neuron \rightarrow Spinal cord \rightarrow Motor ne	$euron \rightarrow Muscle [Effector]$
76.	In the presence of glucose and lactose, <i>Escherichia coli</i> cells because	utilizes glucose. However, lactose also enters the
	(A) low level of permease is always present in the cell	
	(B) it uses the same transporter as glucose	
	(C) if diffuses through the bacterial cell membrane	
	(D) it is transported through porins	
Ans. [
	The preferred molecule is glucose first, then lactose is broken down into galactose and glucose. Permease is Lac operon is always operational at low levels.	
77.	Passive immunization is achieved by administering	
	(A) Heat killed vaccines (B) Toxoids (C) I	Live attenuated vaccines (D) Antibodies
Ans. Sol.	Administration of already prepared antibodies is called t	assive immunisation
501	realization of anoualy propared and bodies is called p	

78.	Which of the following stomach ?	ing anions neutralize the	e acidic pH of the chyme t	hat enters into the duodenum from the
	(A) $H_2PO_4^-$	(B) HSO_4^-	(C) HCO_3^-	(D) CH ₃ COO ⁻
Ans.	[C]			
Sol.		Bile and Pancreatic jui on of acidity of chyme.	ce alkaline in nature due	to high amount of HCO $_{3}^{-}$ anion which
79.	If ¹⁴ CO ₂ is added to a compound to be radi	1 1 2	nthesizing chloroplasts, w	which of the following will be the first
	(A) ATP	(B) NADPH	(C) NADH	(D) 3-phosphoglycerate
Ans. Sol.	U .	, the ¹⁴ CO ₂ is incorporat pound 3-phosphoglyce	1	Ribulose 1-5 Biphosphate and forms 2
80.	Which of the following	ng species makes the la	rgest true flower in the wo	orld?
	(A) Amorphophallu	s titanium	(B) Rafflesia arno	ldii
	(C) Nelumbo nucife	ra	(D) Helianthus an	nuus
Ans.	[B]			
Sol.		the total root parasite ar at inflorescence in the ar		r in angiosperms while Amorphophallus

Part – II Two-Mark Questions MATHEMATICS

81.	The remainder when the polynomial $1 + x^2 + x^4 + x^6 + \dots + x^{22}$ is divided by $1 + x + x^2 + x^3 + \dots + x^{11}$ is -
	(A) 0 (B) 2 (D) $2(1 + x^2 + x^4 + + x^{10})$
Ans.	[D]
Sol.	$P(x) = 1 + x^2 + x^4 + x^6 + \dots + x^{22} = (1 + x^2)(1 + x^4)(1 + x^4 + x^8)(1 - x^4 + x^8)$
	$Q(x) = 1 + x + x^{2} + x^{3} + \dots + x^{11} = (1 + x)(1 + x^{2})(1 + x^{4} + x^{8})$
	$\frac{P(x)}{Q(x)} = \frac{(1+x^4)(1-x^4+x^8)}{(1+x)} = \frac{1-x^4+x^8+x^4-x^8+x^{12}}{1+x} = \frac{1+x^{12}}{1+x}$
	$\overline{Q(x)} = \frac{1+x}{1+x} = \frac{1+x}{1+x}$
	Remainder. When $(1 + x^{12})$ is divided by $(1 + x)$ is = 2
	Now remainder $P(x)$ divided by $Q(x)$
	$= 2(1 + x^2)(1 + x^4 + x^8)$
92	= $2(1 + x^2 + \dots + x^{10})$ The range of the polynomial $p(x) = 4x^3 - 3x$ as x varies over the interval $\begin{pmatrix} -1 & 1 \\ - & 1 \end{pmatrix}$ is
82.	The range of the polynomial $p(x) = 4x^3 - 3x$ as x varies over the interval $ -, 1s $
	(A) [-1, 1] (B) (-1, 1] (C) (-1, 1) $\begin{pmatrix} \overline{2} & \overline{2} \\ (D) & -1 & 1 \\ -\frac{1}{2} & \overline{2} \end{pmatrix}$
	(A) $[-1, 1]$ (B) $(-1, 1]$ (C) $(-1, 1)$ (D) $\begin{bmatrix} -1 & 1 \\ -1 & -1 \end{bmatrix}$
Ans.	$\begin{bmatrix} \mathbf{C} \end{bmatrix}$
Sol.	$P(x) \neq 14x - 5 = 5(4x - 1)$ In
	$\frac{P'(x)}{\ln - \frac{1}{2}} + \frac{12x^2 - 3}{2} = 3 (4x^2 - 1)$ $\frac{P'(x)}{\ln - \frac{1}{2}} + \frac{P'(x)}{2} < 0$
	\Rightarrow P(x) is decreasing
	$\Rightarrow \text{Range} \in (P(-1), P(1))$
	Range $\in (-1, 1)$

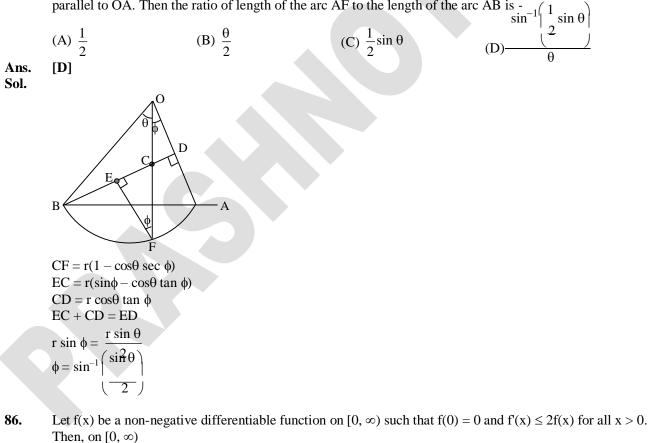
- Ten ants are on the real line. At time t = 0, the k-th ant starts at the point k^2 and travelling at uniform speed, 83. reaches the point $(11 - k)^2$ at time t = 1. The number of distinct times at which at least two ants are at the same location is **(B)** 11 (C) 17 (D) 9 (A) 45
- Ans. [C]
- Velocity of any ant $U = (11 k)^2 k^2 = 121 22 k$ Sol. Now at any time distance travelled by any ant will be $S = S_0 + ut$ Where S_0 is the initial position Now two ants will be at same position


 - If $S_{i} = S_{j}$ $k^{2} 22 k t + 121 t = k^{2} 22 k t + 121 t$ $t = \frac{k_{j}^{2} k_{i}^{2}}{22(k_{j} k_{i})}$; $t = \frac{k_{j} + k_{i}}{22}$ (as $k_{i} \neq k_{j}$)
 - Now for i = 1

Values of t will be
$$\frac{3}{22}$$
, $\frac{4}{22}$, $\frac{5}{22}$, $\frac{11}{22}$ (9 values)

values of t will be $\frac{4}{22}$, $\frac{5}{22}$, $\frac{11}{22}$, $\frac{12}{22}$

We can see there is only 1 distinct value Similarly of i = 3,4,5,6,7,8,9 we get only 1 distinct value each. So in all there 17 distinct values of 't'


A wall is inclined to the floor at an angle of 135°. A ladder of length ℓ is resting on the wall. As the ladder 84. slides down, its mid-point traces an arc of an ellipse. Then the area of the ellipse is

$$\frac{\text{Mid point (h, k)} = \left(\begin{array}{c} x - x_1 - x_1 \\ \hline 2 \\ \hline 2 \\ \hline \end{array}\right)}{\left(\begin{array}{c} 2 \\ \hline 2 \\ \hline \end{array}\right)} \\
\text{Now } (x + x_1)^2 + x_1^2 = \ell^2 \\
\text{As } 2h + 4k = x + x_1, 2k = x, \\
\text{So required locus is} \\
4(h + 2k)^2 + 4k^2 = \ell^2 \\
h^2 + 5k^2 + 4hk = \frac{\ell^2}{4} \\
x^2 + 5y^2 + 4xy = \frac{\ell^2}{4} \\
\text{Whose area is } \frac{\pi\ell^2}{4}$$

Let AB be a sector of a circle with centre O and radius d, $\angle AOB = \theta \left(< \pi \right)$, and D be a point on OA such 85. 2)

that BD is perpendicular OA. Let E be the midpoint of BD and F be a point on the arc AB such that EF is parallel to OA. Then the ratio of length of the arc AF to the length of the arc AB is -

- (A) f(x) is always a constant function
- (C) f(x) is strictly decreasing
- Ans.
- [A] $f'(x) \le 2 f(x)$ Sol.

(B) f(x) is strictly increasing (D) f'(x) changes sign

 $\begin{array}{ll} f'(x)e^{-2x} \leq 2 \ f(x)e^{-2x} \\ \displaystyle \frac{d}{dx}(f(x)e^{-2n}) \leq 0 \\ g(x) = f(x)e^{-2x} \ \text{is non-Increasing function} \\ x \geq 0 \\ g(x) \leq g(0) \\ f(x)e^{-2x} \leq f(0)e^{-0} \\ f(x)e^{-2x} \leq 0 \\ f(x) \leq 0 \\ \displaystyle \text{but given } f(x) \ \text{is not negative} \\ \hline \therefore \ f(x) = 0 \\ \end{array}$

87. For each positive real number λ , let A_{λ} be the set of all natural numbers n such that $|\sin(\sqrt{n+1} - \sin(\sqrt{n})| < \lambda$.

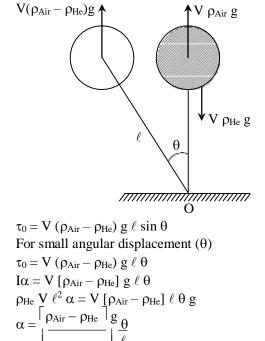
Let A^{c}_{λ} be the complement of A_{λ} in the set of all natural numbers. Then -

(A) A_1, A_1, A_2 are all finite sets (B) A_1 is a finite set but A_1 , A_2 are infinite sets (C) $A^{5}_{c}, A^{c}, A^{c}_{c}$ are all finite sets $\frac{1}{2}, \frac{1}{3}, \frac{2}{5}$ (D) A_1 , A_2 are finite sets and A_1 is an infinite set 3 [C] Ans. As $n \rightarrow \infty$ Sol. $|\sin\sqrt{x+1} - \sin x| \rightarrow 0$... There exist infinite natural numbers for which $|\sin\sqrt{x+1} - \sin\sqrt{x}| < \lambda \forall \lambda > 0$ Hence A_1, A_1, A_2 are all infinite sets $\overline{2}$ $\overline{3}$ 5 Let f be a continuous function defined on [0, 1] such that $\int_0^1 f^2(x) dx = \left(\int_0^1 f(x) dx\right)^2$. Then the range of f 88. (A) has exactly two points (B) has more than two points (C) is the interval [0, 1] (D) is a singleton Ans. [D] By Cauchy Schwarz inequality Sol. $\left\{ \int_{a}^{b} f(x)g(x)dx \right\}^{2} \leq \int_{a}^{b} (f(x))^{2}dx \int_{a}^{b} (g(x))^{2}dx$ Here g(x) = 1and equality holds only when $\frac{f(x)}{g(x)} = \lambda$ So, f(x) is constant Three schools send 2, 4 and 6 students, respectively, to a summer camp. The 12 students must be **89.** accommodated in 6 rooms numbered 1,2,3,4,5,6 in such a way that each room has exactly 2 students and both from the same school. The number of ways, the students can be accommodated in the rooms is -(B) 45 (C) 32400 (A) 60 (D) 2700

Ans. [C]

Sol.
$$\frac{\left|\frac{4}{\left((2)^{2}\right)\left|\frac{2}{2}\right|}{\left((2)^{3}\right|\frac{3}{3}\right)} \times \left|\frac{6}{\left((2)^{3}\right|\frac{3}{3}\right)} \times \left|\frac{6}{\left((2)^{3}\right)\left|\frac{3}{3}\right|} \times \left|\frac{6}{\left((1-\frac{1}{az})\right)}\right|} \right|$$

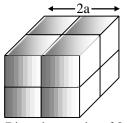
90. Let a be a fixed non-zero complex number with |a| < 1 and
$$\frac{w = \left(z - a\right)}{\left(1 - \overline{az}\right)}$$
. Where z is a complex number.
(A) there exists a complex number z with |z| < 1 such that |w| > 1
(B) |w| > 1 for all z such that |z| < 1
(C) |w| < 1 for all z such that |z| < 1
(D) there exists z such with |z| < 1 and |w| = 1
Ans. [C]
Ans. [C]
As we = $\left(\frac{z - a}{\left(1 - \overline{az}\right)}\right) \Rightarrow w - a zw = z - a$
 $\Rightarrow w + a = z(1 + \overline{a}w)$
 $z = \frac{w + a}{1 + \overline{a}w}$
Given |z| < 1
 $\left|\frac{w + a}{1 + \overline{a}w}\right| < 1 \Rightarrow |w + a|^{2} < |1 + \overline{a}w|^{2}$
 $\Rightarrow (w + a) (\overline{w} + \overline{a}) < (1 + a\overline{w}) (1 + a\overline{w})$
 $\Rightarrow w\overline{w} + w \overline{a} + a \overline{w} + a \overline{a} < 1 + a \overline{w} + a w \overline{w} + a \overline{w} w$
 $\Rightarrow a \overline{a} \cdot w \overline{w} - w \overline{w} - a \overline{a} + 1 > 0$
 $\Rightarrow |a|^{2}|w|^{2} - |w|^{2}|a|^{2} + 1 > 0$
 $\Rightarrow |a|^{2}|w|^{2} - |w|^{2}|a|^{2} + 1 > 0$
 $\Rightarrow |a|^{2}|w|^{2} - |w|^{2}|a|^{2} - 1 0$
 $|w| < 1 \& |z| < 1$


PHYSICS

91. A light balloon filled with helium of density ρ_{He} is tied to a long light string of length ℓ and the string is attached to the ground. If the balloon is displaced slightly in the horizontal direction from the equilibrium and released then .

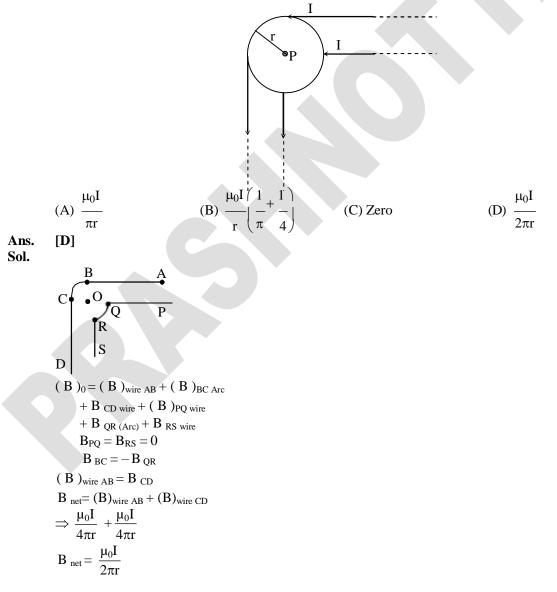
	(A) The ballon undergoes simple harmonic motion with period 2π ,	$\left(\frac{\rho_{air}}{\rho_{air}-\rho_{He}}\right)\frac{\ell}{g}$
	(B) The ballon undergoes simple harmonic motion with period 2π ,	$\left(\frac{\rho_{air}-\rho_{He}}{\rho_{eir}}\right)\ell$
	(C) The ballon undergoes simple harmonic motion with period 2π ,	$\left(\frac{\rho_{He}}{\rho_{air}-\rho_{He}}\right)\frac{\ell}{g}$
	(D) The ballon undergoes conical oscillations with period $2\pi \sqrt{\frac{\rho_{ai}}{\rho_{ai}}}$	$\frac{1}{r} + \rho_{He} \frac{1}{r} \frac{\ell}{g}$
,	[C]	

Ans.


Sol.

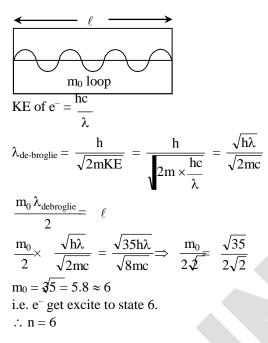
$$\alpha = \frac{\rho_{\text{Air}} - \rho_{\text{He}}}{\left\lfloor \frac{\rho_{\text{Air}} - \rho_{\text{He}}}{\rho_{\text{He}}} \right\rfloor \frac{\theta}{\ell}}$$
$$\omega = \sqrt{\left(\frac{\rho_{\text{Air}} - \rho_{\text{He}}}{\rho_{\text{He}}}\right) \frac{g}{\ell}}$$
$$= 2\pi \sqrt{\frac{\ell}{g} \frac{\rho_{\text{He}}}{(\rho_{\text{Air}} - \rho_{\text{He}})}}$$

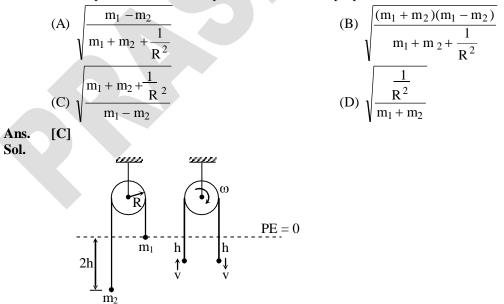
92. Consider a cube of uniform charge density ρ. The ratio of electrostatic potential at the centre of the cube to that at one of the corners of the cube is


(C) $\sqrt{2}$ (B) $\sqrt{3}/2$ (A) 2 (D) 1 Ans. [A] Sol. Р а Let at the corner of cube potential = V_0 Q Potential ∞ Side of cube $Q = \rho \times a^3$ $ho a^3$ So potential \propto _____ а Potential $\propto a^2$

Big cube consist of 8 cube At centre of big cube of side 2a, potential is $8V_0$ Potential at corner of big cube = $V_0 \times (2)^2 = 4V_0$

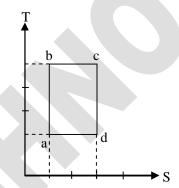
Required ratio =
$$\frac{8V_0}{4V_0} = 2:1$$

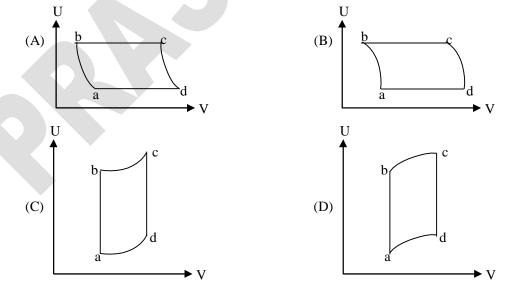

93. Two infinitely long wires each carrying current I along the same direction are made into the geometry as shown in the figure. The magnetic field at the point P is


94. A photon of wavelength λ is absorbed by an electron confined to a box of length $\sqrt{35h\lambda} / 8mc$. As a result, the electron makes a transition from state k = 1 to the state n. Subsequently the electron transits from the state n to the state m by emitting a photon of wavelength $\lambda' = 1.85 \lambda$. Then

(A)
$$n = 4$$
; $m = 2$ (B) $n = 5$; $m = 3$ (C) $n = 6$; $m = 4$ (D) $n = 3$; $m = 1$
Ans. [C]

Sol.

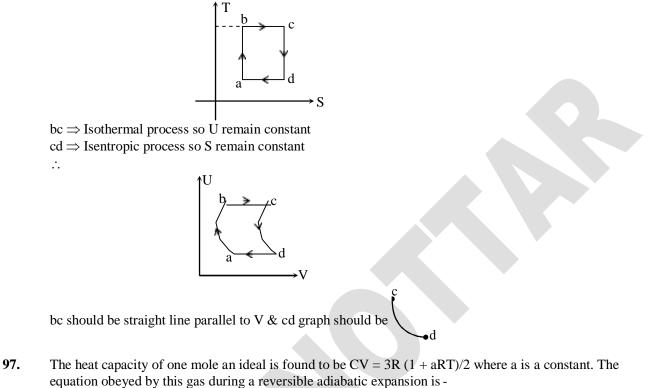

95. Consider two masses with $m_1 > m_2$ connected by a light inextensible string that passes over a pulley of radius R and moment of inertia I about its axis of rotation. The string does not slip on the pulley and the pulley turns without friction. The two masses are released from rest separated by a vertical distance 2h. When the two masses pass each other, the speed of the masses is proportional to


The total mechanical energy of system = conserved
Hence

$$KE_i + PE_i = KE_f + PE_f$$

 $0 - m_2g \times 2h = \frac{1}{2}m_2v^2 + \frac{1}{2}m_1v^2 + \frac{1}{2}I\omega^2 - m_1gh - m_2gh$
Also $\omega = \frac{v}{R}$
 $(m_1 - m_2)gh = \frac{1}{2}(m_1 + m_2)v^2 + \frac{1}{2}I (\frac{v}{R})^2$
 $(m_1 - m_2)gh = \frac{v^2 \Gamma}{2} [m_1 + m_2 + \frac{1}{R^2}]$
 $v \propto \sqrt{\frac{m_1 - m_2}{m_1 + m_2 + \frac{1}{R^2}}}$

96. An ideal gas is taken reversibly around the cycle a-b-c-d-a as shown on the T (temperature) – S (entrophy) diagram



The most appropriate representation of above cycle on a U (internal energy) – V (volume) diagrame is

Ans. [A]

- (A) $TV^{3/2}e^{aRT} = constant$
- (B) $TV^{3/2}e^{3aRT/2} = constant$
- (C) $TV^{3/2} = constant$
- (D) $TV^{3/2}e^{2aRT/3} = constant$

Ans.

Adiabatic process Sol.

[A]

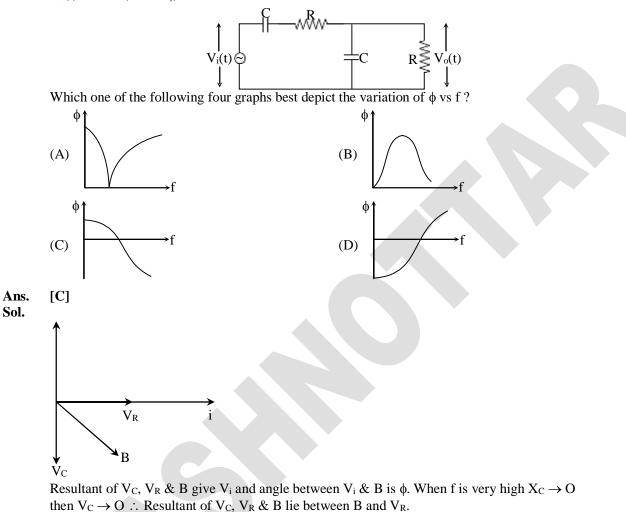
$$TV^{\gamma-1} = C$$

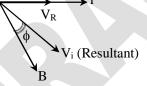
$$\gamma = 1 + \frac{2}{f}$$

$$TV^{\frac{2}{f}} = C$$

$$C_{V} = \frac{fR}{2} = \frac{3R(1 + aRT)}{2}$$

$$\frac{fR}{2} = \frac{3Re^{aRT}}{2}$$

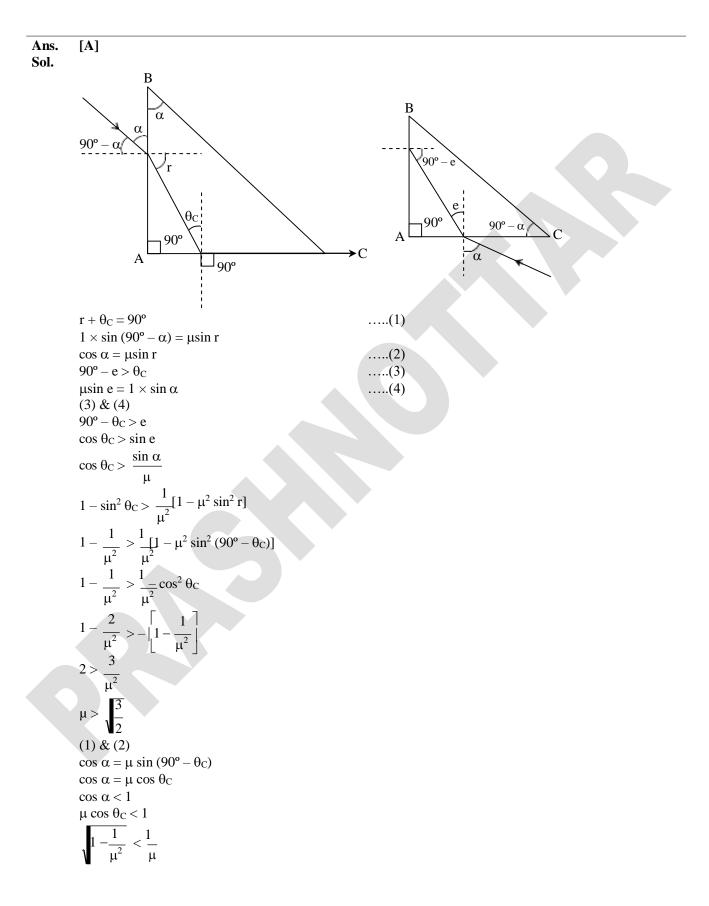

$$\frac{2}{f} = \frac{2}{3e^{aRT}}$$


$$TV^{\frac{2}{3e^{aRT}}} = C$$

$$TV^{\frac{3e^{aRT}}{2}} = C$$
Ans. given is $TV^{\frac{3}{2}}e^{aRT}$

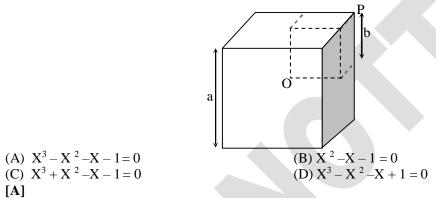
So no option is matching may be due to printing mistake.

98. If the input voltage V_i to the circuit below is given by $V_i(t) = A \cos(2\pi f t)$, the output voltage is given by $V_0(t) = B \cos(2\pi f t + \phi)$ -



B lag behind ϕ \therefore At higher frequency ϕ become – ve.

99.


A glass prism has a right-triangular cross section ABC, with $\angle A = 90^{\circ}$. A ray of light parallel to the hypotenuse BC and incident on the side AB emerges grazing the side AC. Another ray, again parallel to the hypotenuse BC, incident on the side AC suffers total internal reflection at the side AB. Which one of the following must be true about the refractive index μ of the material of the prism?

(A)
$$\sqrt{\frac{3}{2}} < \mu < \sqrt{2}$$

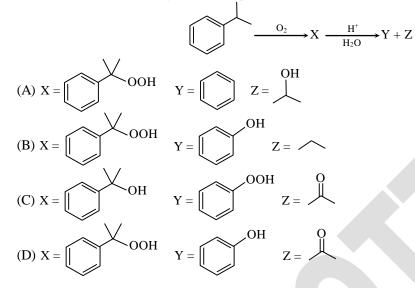
(B) $\mu > \sqrt{3}$
(C) $\mu < \sqrt{\frac{3}{2}}$
(D) $\sqrt{2} < \mu < \sqrt{3}$

$$1 - \frac{1}{\mu^2} < \frac{1}{\mu^2}$$
$$1 < \frac{2}{\mu^2}$$
$$\mu < \sqrt{2}$$
$$\therefore \sqrt{\frac{3}{2}} < \mu < \sqrt{2}$$

100. A smaller cube with side b (depicted by dashed lines) is excised from a bigger uniform cube with side a as shown below such that both cubes have a common vertex P. Let X = a/b. If the centre of mass of the remaining solid is at the vertex O of smaller cube then X satisfies.

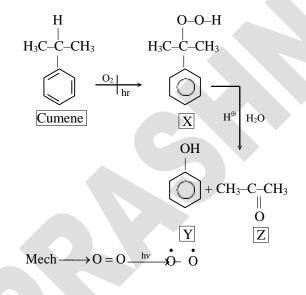
Ans. Sol.

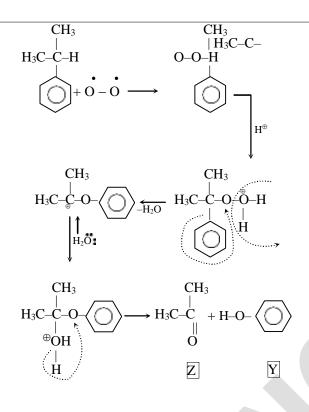
Centre of mass of remaining cube x coordinate = b


$$X_{CM} = \frac{2}{\rho a^3 - \rho b^3}$$

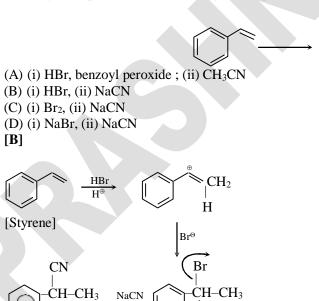
We will consider removed mass as a negative mass

$$\begin{aligned} & \frac{\rho a^4}{b} = \frac{-\frac{\rho b^4}{2}}{\rho a^3 - \rho b^3} \\ & a^3 b - b^4 = \frac{a^4}{2} - \frac{b^4}{2} \\ & 2a^3 b - 2b^4 = a^4 - b^4 \\ & put \ a = bx \implies 2b^4 x^3 b - 2b^4 = b^4 x^4 - b^4 \\ & 2x^3 - 1 = = x^4 \\ & 2x^3 - 2 + 1 = x^4 \\ & 2[x^3 - 1] = (x^2 - 1) (x^2 + 1) \\ & 2[x - 1][x^2 + 1 + x] = [x - 1][x + 1][x^2 + 1] \\ & 2x^2 + 2 + 2x = x^3 + x + x^2 + 1 \\ & x^3 - x^2 - x - 1 = 0 \end{aligned}$$

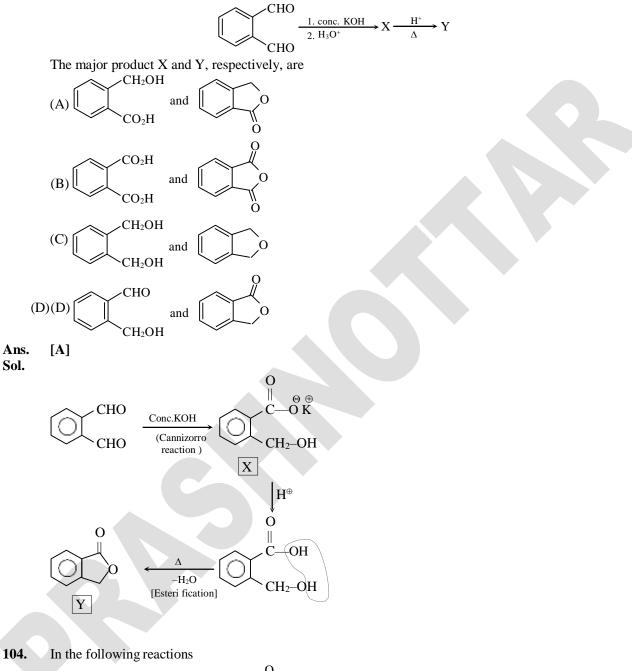

CHEMISTRY

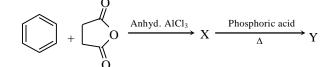


Ans. [D]

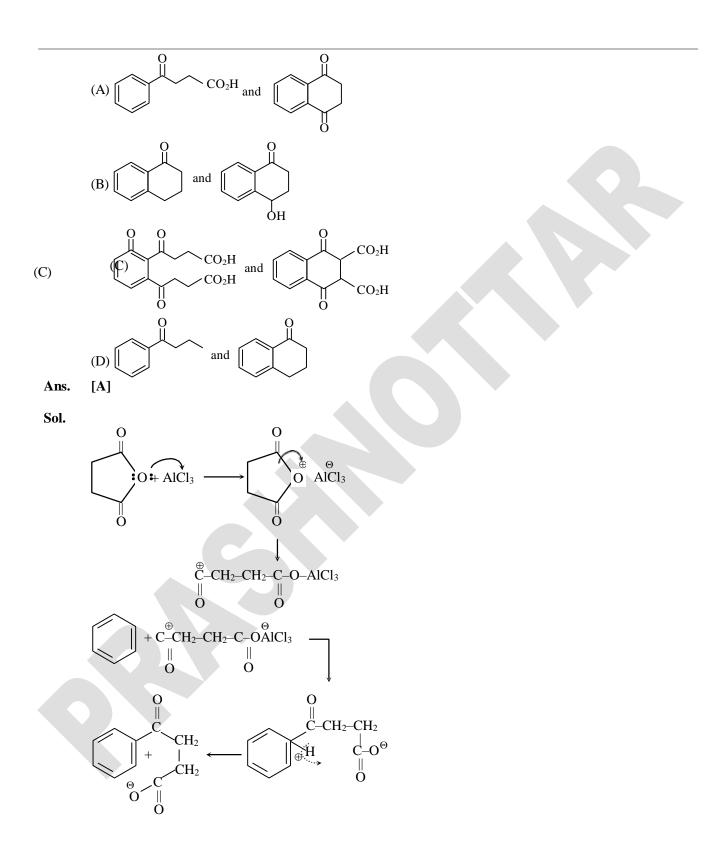

Sol.

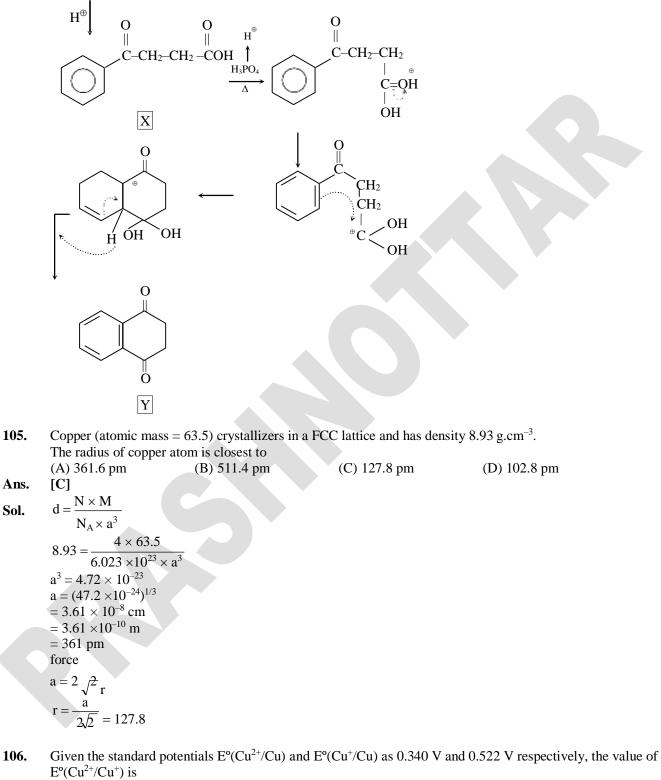
102. The reagent required for the following two step transformation are


ÇN



%CN


SN²


Ans. Sol.

X and Y, respectively, are

(A) 0.364 V (B) 0.158 V (C) -0.182 V (D) -0.316 V

Ans. [B]

Sol.

(A) 0.14

$$Cu^{+2} + 2e^{-} \longrightarrow Cu \Delta G^{\circ}_{1} = -n E^{\circ}F$$

$$Cu^{+2} + e^{-} \longrightarrow Cu \Delta G^{\circ}_{2} = -n E^{\circ}F$$

$$Cu^{+2} + e^{-} \longrightarrow Cu^{+} \Delta G^{\circ}_{3} = -n E^{\circ}F$$

$$\Delta G^{\circ}_{3} = \Delta G^{\circ}_{1} - \Delta G^{\circ}_{3}$$

$$-n E^{\circ}F = -n E^{\circ}F + n E^{\circ}F$$

$$Cu^{+2} + e^{-} = -n E^{\circ}F + n E^{\circ}F$$

$$Cu^{+2} + e^{-} = -n E^{\circ}F + n E^{\circ}F$$

$$Cu^{+2} + e^{-} = -n E^{\circ}F + n E^{\circ}F$$

$$Cu^{+2} + e^{-} = -n E^{\circ}F + n E^{\circ}F$$

$$Cu^{+2} + e^{-} = -n E^{\circ}F + n E^{\circ}F$$

$$Cu^{+2} + e^{-} = -n E^{\circ}F + n E^{\circ}F$$

$$Cu^{+2} + e^{-} = -n E^{\circ}F + n E^{\circ}F$$

$$Cu^{+2} + e^{-} = -n E^{\circ}F + n E^{\circ}F$$

$$Cu^{+2} + e^{-} = -n E^{\circ}F + n E^{\circ}F$$

$$Cu^{+2} + e^{-} = -n E^{\circ}F + n E^{\circ}F$$

$$Cu^{+2} + e^{-} = -n E^{\circ}F + n E^{\circ}F$$

$$Cu^{+2} + e^{-} = -n E^{\circ}F + n E^{\circ}F$$

$$Cu^{+2} + e^{-} = -n E^{\circ}F + n E^{\circ}F$$

$$Cu^{+2} + e^{-} = -n E^{\circ}F + n E^{\circ}F$$

$$Cu^{+2} + e^{-} = -n E^{\circ}F + n E^{\circ}F$$

$$Cu^{+2} + e^{-} = -n E^{\circ}F + n E^{\circ}F$$

$$Cu^{+2} + e^{-} = -n E^{\circ}F + n E^{\circ}F$$

$$Cu^{+2} + e^{-} = -n E^{\circ}F + n E^{\circ}F$$

$$Cu^{+2} + e^{-} = -n E^{\circ}F + n E^{\circ}F$$

$$Cu^{+2} + e^{-} = -n E^{\circ}F + n E^{\circ}F$$

$$Cu^{+2} + e^{-} = -n E^{\circ}F + n E^{\circ}F$$

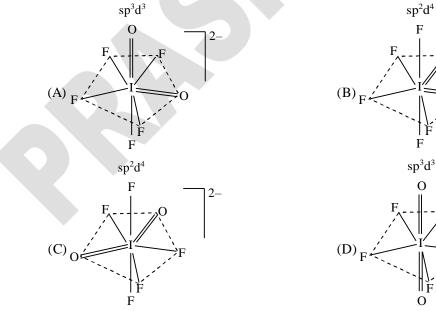
$$Cu^{+2} + e^{-} = -n E^{\circ}F + n E^{\circ}F$$

$$Cu^{+2} + e^{-} = -n E^{\circ}F + n E^{\circ}F$$

$$Cu^{+2} + e^{-} = -n E^{\circ}F + n E^{\circ}F + n E^{\circ}F$$

$$Cu^{+2} + e^{-} = -n E^{\circ}F + n E^$$

For electroplating, 1.5 amp current is passed for 250 s through 250 mL of 0.15 M solution of MSO₄. Only 107. 85% of the current was utilized for electrolysis. The molarity of MSO₄ solution after electrolysis is closest to [Assume that the volume of the solution remained constant]


(C) 0.07


(D) 0.035

Ans. [A]
Sol. No. of mole =
$$\frac{i \times t}{96500 \times v.f}$$
, $n \times v.f = \frac{i \times t}{96500} \times n = \frac{1.5 \times 250}{96500 \times 2} \times 0.85$
 $n = .00165$ (deposited)
 $n = \frac{250 \times .15}{1000} = .0375$ (initial mole)
 $n_{left} = .03585$ (mole left)
 $M_{left} = \frac{.03585}{.25} = 0.143$

(B) 0.014

108. The hybridization of the central atom and the shape of $[IO_2F_5]^{2-}$ ion respectively, are-

[D] Ans.

$[IO F^{-}]^{2^{-}}$ ion Sol.

Hybridisation is sp³d³ shape is pentagonal bipyramidal

Double bond cause more repulsion so they would be on Axial position 180° angle to each other so shape is

109. 2.33 g of compound X (empirical formula $CoH_{12}N_4Cl_3$) upon treatment with excess AgNO₃ solution produces 1.435 g of a white precipitate. The primary and secondary valences of cobalt in compound X, respectively, are

(C) 2, 4

(D) 4, 3

[Given : Atomic mass : Co = 59, Cl = 35.5, Ag = 108] (B) 3, 4

Ans. [A] **Sol.** M.wt = $59 + 12 + 14 \times 4 + 35.5 \times 3 = 233.5$

> $C_0H_{12}N_4Cl_3 \xrightarrow{AgNO_3} 1.435g AgCl$ $\frac{2.33}{233.5}$ g = 0.01 mole (0.01 mole)

- (i) 0.01 mole molecule produce 0.01 mole AgC1 \therefore one replaceable $Cl^{\underline{\Theta}}$ ion so formula of complex is [CO(NH₃)₄Cl₂]Cl
- (ii) Oxidation no. of Co is +3 so primary valency is 3.
- (iii) Coordination no. is 6 so sec. valency is 6 so ans. is 3,6
- The specific conductance (κ) of 0.02 M aqueous acetic acid solution at 298 K is 1.65×10^{-4} S cm⁻¹. The 110. degree of dissociation of acetic acid is [Given : equivalent conductance at infinite dilution of $H^+ = 349.1 \text{ S cm}^2 \text{ mol}^{-1}$ and $CH_3COO^- = 40.9 \text{ S cm}^2$

 mol^{-1}] (A) 0.021 (B) 0.21 (C) 0.012 (D) 0.12 Ans. [A] $\lambda_{\rm M} = \frac{1000 \times \rm K}{1000 \times \rm K}$ Sol. M $1000 \times 1.65 \times 10^{-4}$ 0.2 = 8.25 $\lambda^{\infty}_{H} = \lambda^{\infty}_{M}(H^{+}) + \lambda^{\infty}_{M}(CH COO^{-})$ = 349.1 + 40.9= 390 $\infty = \frac{8.25}{390} = .0211$

BIOLOGY

111.	Match the following organelles in Group I with the	the structures in Group II. Choose the correct combination.
	Group I	Group II
	P. Mitochondrion	i. Cisternae
	Q. Golgi	ii. Cristae
	R. Chloroplast	iii. Thylakoids
	S. Centrosome	iv. Radial spokes
	(A) P-ii , Q-i, R-iii, S-iv	(B) P-iii, Q-i, R-ii, S-iv
	(C) P-iv, Q-i, R-ii, S-iii	(D) P-iv, Q-ii, R-i, S-iii

Ans. [A]

- **Sol.** Cristae are invaginations of inner mitochondrial membrane. Cisternae is unit of golgi body where glycosidation and glycosylation takes place. Grana of chloroplast are composed of thylakoids. Centrosome contains centrioles with radial spokes.
- A human population containing 200 individuals has two alleles at the 'T' locus, named *T* and *t*. *T*, which produces tall individuals, is dominant over *t*, which produces short individuals. If the population has 90 *TT*, 40 *Tt* and 70 *tt* genotypes, what will be the frequencies of these two alleles in this population ?

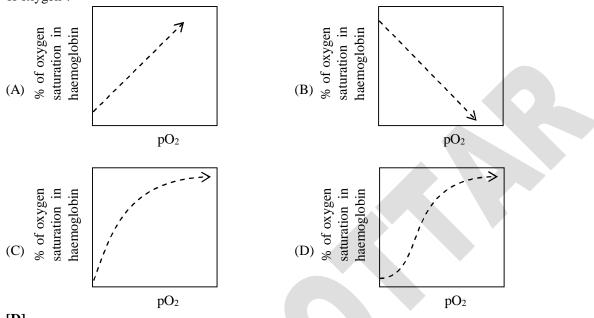
(A) *T*, 0.50 ; *t*, 0.50

- (B) *T*, 0.55 ; *t*, 0.45
- (C) *T*, 0.45 ; *t*, 0.35
- (D) *T*, 0.90 ; *t*, 0.10

Ans. [B]

Sol. A population with 200 individual has 90TT, 40 Tt and 70 tt genotypes i.e. dominant allele (T) is TT + Tt

i.e. 90 + 90 + 40


 $\Rightarrow 220$

Recessive allele (t) is Tt + tt

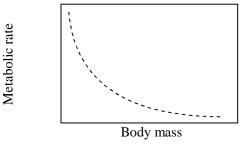
$$\Rightarrow 180$$

Total allele = 400

Dominant allele (T) frequency = $\frac{220}{400} = 0.55$ Recessive allele (t) frequency = $\frac{180}{400} = 0.45$ **113.** Which of the following graphs best describes the oxygen dissociation curve where pO_2 is the partial pressure of oxygen ?

Ans. [D]

Sol. Oxyhaemoglobin dissociation curve is sigmoid shaped.


- **114.** Which of the following best describes the DNA content and the number of chromosomes at the end of S and M phases of the cell cycle in mitosis, if the DNA content of the cell in the beginning of cell cycle (G1 phase) is considered as C and the number of chromosomes 2N ?
 - (A) 2C and 2N for S phase ; 2C and 2N for M phase
 - (B) 2C and N for S phase ; 2C and N for M phase
 - (C) 2C and 2N for S phase ; C and 2N for M phase
 - (D) C and N for S phase ; C and 2N for M phase

Ans. Sol.

[C]

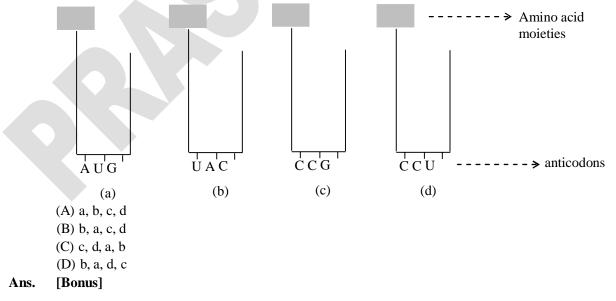
	$G_1 \longrightarrow$	s —	\rightarrow G ₂ \longrightarrow	M
DNA	С	2C	2C	$2C \rightarrow C$
Content				
No. of	2N	2N	2N	$2N \rightarrow 4N \rightarrow 2N$
Chromosome				

115. Study the following graph of metabolic rate of various terrestrial mammals as a function of their body mass and choose the correct option below.

- (A) Animals are distributed throughout the curve with the smaller animals towards the left and progressively bigger animals towards the right
- (B) The smaller animals below a certain critical mass cluster at the left end of the curve and the larger animals above the critical mass cluster on the right end
- (C) Animals are distributed throughout the curve with the larger animals towards the left and progressively smaller animals towards the right
- (D) The larger animals above a certain critical mass cluster at the left end of the curve and the smaller animals below the critical mass cluster on the right end

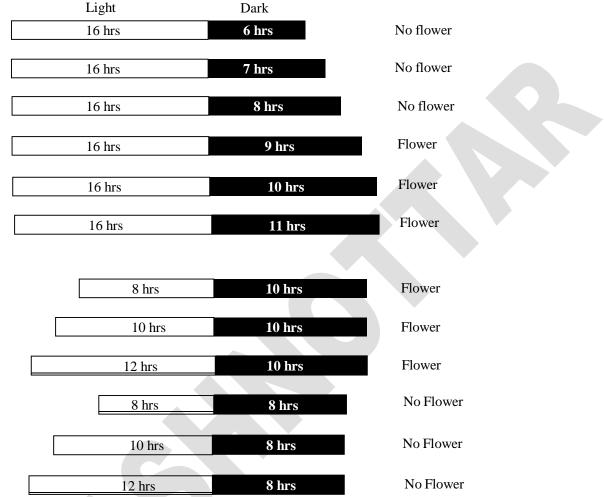
Ans. [A]

- **Sol.** The metabolic theory of Ecology (MTE) is an extension of Kleiber's law and states that the metabolic rate of organism is the fundamental biological rate that governs most observed patterns in ecology
- **116.** Match the human disorders shown in Group I with the biochemical processes in Group II. Choose the correct combination


Group I

- P. Phenylketonuria
- Q. Albinism
- R. Homocystinuria
- S. Argininemia

(A) P-ii, Q-i, R-iv, S-v (C) P-ii, Q-i, R-v, S-iii Group II i. Melanin synthesis ii. Conversion of Phenylalanine to Tyrosine iii. Tyrosine degradation iv. Methionine metabolism v. Urea Synthesis (B) P-i, Q-iv, R-ii, S-v (D) P-v, Q-iii, R-i, S-ii


Ans. [A]

- **Sol.** Phenylketonuria is due to non-conversion of phenylalanine into tyrosine. Albinism is non-synthesis of melanin pigment. Homocystinuria is associated with methionine metabolism. Argininemia is associated with urea synthesis.
- **117.** An mRNA is transcribed from a DNA segment having the base sequence 3'-TACATGGGTCCG-5'. What will be the correct order of binding of the four amino acyl-tRNA complexes given below during translation of this mRNA ?

Sol.	DNA sequen	ce		G GGT CCC				
	mRNA		5' AUG UA	AC CCA GG	iC 3'			
	t-RNA							
		(1) U A		2 A U G	G G G		(4) CCG	
	mRNA	5'A U	G I	UAC	C C	C A	GGC	3'
		Directio	on of translat	tion				
	None of the c	option is cor	rect					
	As option (D	-		I				
	It should be	in	place of					
	(GGU	CO	CU				
118.	If the initial r	number of te	emplate DN/	A molecules	in a PCR re	action is 1	000. the numb	per of product DNA
		If the initial number of template DNA molecules in a PCR reaction is 1000, the number of product DNA molecules at the end of 20 cycles will be closest to						
	(A) 10 ³		(B) 10 ⁶		(C) 10 ⁹			(D) 10 ¹²
Ans.	[C]							
Sol.	During PCR,	the number	of DNA mo	olecules incr	eases by 2 ⁿ .	Where 'n'	is number of c	livisions
119.	The allele for	r black hair	(B) is dom	inant over h	rown hair (b) and the	allele for bro	own eye (E) is dominan
117,								l brown-eyed individua
	-		-		-	-		haired and brown-eye
	individuals to	black- hair	ed and brow	n-eyed indi	viduals is			
	(A) 2 : 1				(B) 3 : 1			
	(C) 1 : 1				(D) 1 : 2			
Ans. [
Sol.	Parents –	BbEe Black haired	4	×		bEE n haired		
		Brown eyed				vn eyed		
	↓				DIOV	√n cycu ↓		
	Gametes –	·				•		
		BE	Be	bE	be			
		BbEE	BbEe	bbEE	bbEe	bE		
	Ratio of Brow	vn haired ar	nd Brown ey	ed to Black	haired and E	Brown eye	d is 2 : 2 or 1	:1

120. In an experiment represented in the schematic below, a plant species was grown in different day and night cycles and its photoperiodic flowering behaviour was noted. This species is a

(A) short day plant and actually measures day length to flower

(B) short day plant and actually measures night length to flower

(C) long day plant and actually measures night length to flower

(D) long day plant and actually measures day length to flower

Ans. [B]

Sol. SDP (Short day plants) or LNP (Long Night Plants) flowers only when photoperiod is below critical day length (Critical photoperiod) or they are responsible to night length and flower when night length is above critical dark period.

In this experiment plant flowers when dark period is above 8 hrs. So, it is SDP and actually measures night length to flower.